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A method is described for measuring the volume fractions and textures of martensite and
austenite in strongly textured stainless steel orthodontic wires using a conventional X-ray
diffractometer. These wires display a classic fibre texture with the 〈111〉 of the FCC
austenite phase and the 〈110〉 of the BCC martensite phase aligned parallel to the wire axis.
The samples analysed consisted of wire cross-sections bundled together and chemically
polished in an epoxy disc. In this form the dominant lines in the XRD patterns are the
austenite (111) and the martensite (110). On the basis of X-ray diffraction results from these
two lines only, procedures are described for, (a) correcting the X-ray intensity data for both
the finite size and irregular cross-sectional shape of the specimens in relation to the X-ray
beam footprint, (b) separately measuring the texture of the austenite and martensite phases
and, (c) correcting the 111 and 110 integrated intensities for texture. These procedures are
illustrated using X-ray data from four different orthodontic wires. The factors limiting the
accuracy of the phase analysis are discussed. C© 2000 Kluwer Academic Publishers

1. Introduction

AISI 302 type stainless steels were introduced as or-
thodontic wires in 1929 [1, 2]. Since then they have
been the primary alloys for orthodontic wires. They
have strength, a high modulus of elasticity, excellent
formability, good corrosion resistance, and are avail-
able at a moderate cost [3, 4]. The mechanical prop-
erties of orthodontic wires are governed primarily by
their microstructure and one of the main factors control-
ling this is the forming process. Type 302 orthodontic
wires are produced by a cold drawing process combined
with intermediate annealing heat treatments. Although
the basic atomic arrangement of 302 stainless steel is
face centred cubic austenite, partial transformation to
alpha or epsilon martensite, occurs during the draw-
ing of the wire owing to the large deformation associ-
ated with this process [5, 6]. One of the benefits of the
stress-induced transformation of austenite to marten-
site is the increase in strength of orthodontic wires.
For clinical applications, therefore, it is important to
be able to measure and control the relative proportions
of austenite and martensite in order to optimise and
identify the conditions for high strength without loss of
ductility.

The work presented in this paper on the quantifica-
tion of martensite and austenite in orthodontic wires by
X-ray diffraction (XRD), is part of a broader investiga-
tion of the mechanical and microstructural properties

of these wires. XRD is a well established technique
for quantifying the martensite and austenite [7, 8] be-
cause the peaks from these phases are easily resolved
even in heavily deformed and fined grained materials
used in the present investigation (see Fig. 1). Provided
the crystallites in the material are randomly oriented or
nearly randomly orientated, it is a relatively simple mat-
ter to quantify the phase content of the wires through
an analysis of the integrated intensities of the diffrac-
tion peaks. However, orthodontic wires generally have
a strong texture and the conventional quantitative XRD
intensity relations based on randomly oriented crystals
are invalid. Accordingly, we have developed a method
for determining the austenite and martensite phase con-
tent even when a strong texture exists in wires. This is
based on measuring the integrated intensities of 110-
martensite and 111-austenite lines, and the preferred
orientation distribution from wire cross sections using
a conventional diffractometer. Analytical procedures
are described for coping with the preferred orientation
and the irregular finite lateral dimensions of the wire
specimens.

2. Measurement theory & experimental
technique

These investigations were carried out on two different
brands of orthodontic wire, referred to here as Type
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Figure 1 111 Austenite and 110 martensite profiles from two orthodon-
tic wires, (a) before extrusion (D = 1.62 mm) and (b) after extrusion
(D = 0.52 mm). A large proportion of the austenite is transformed into
martensite during the extrusion process.

W and Type D, which are manufactured in different
countries;

• Type W Wires. These have diameters of 0.52 mm
and 1.62 mm. The 0.52 mm diameter wire is the one
used in orthodontic applications. The 1.62 diame-
ter wire is the starting material before extrusion to
form the 0.52 mm diameter wire.
• Type D Wires. These have diameters of 0.88 mm

and 2.18 mm. The 0.88 mm diameter wire is the one
used in orthodontic practice. The 2.18 mm diame-
ter wire is the starting material before extrusion to
form the 0.88 mm diameter wire.

These wires contain theγ -austenitic andα-martensitic
phases. Other phases that are known to occur in or-
thodontic wires, such asδ-ferrite (δ-Fe), chromium car-
bide (Cr23C6, Cr7C3) and iron carbide (Fe3C), were not
observed.

According to [7], the integrated intensities of the
martensite and austenite diffraction lines,I hkl

M and
I HKL
A , are given in terms of the volume fractionsVM

andVA (= 1− VM) of each phase by,

I hkl
M = CVMmhklLP(θM)F2

Me−BM/2d2
M

v2
M

and

I H K L
A = CVAmHKLLP(θA)F2

Ae−BA/2d2
A

v2
A

(1)

where, C is a constant embodying the dimensions
of the diffractometer, the incident beam power and
the attenuation coefficientµ of the sample (it is as-
sumed thatµM =µA), mhkl and mHKL are the mul-

tiplicity factors, vM andvA are the cell volumes,dM
and dA are thed spacings in martensite and austen-
ite, respectively,FM and FA are the structure factors
for the hkl and HKL lines respectively,BM and BA
are the Debye-Waller factors for each phase, LP (θM)
and LP (θA) are the Lorentz-Polarization factors which,
for the diffractometer used in this work, are given by
LP(θ ) = (1+cos2 2θ cos2 2θmono)/ sin 2θ cosθ where
θmonois the Bragg angle of the graphite diffracted beam
monochromator (i.e.θmono= 13.3◦). To simplify the
analysis, the Equation 1 may be abbreviated to

I hkl
M = CmhklVM K hkl

M

and

I HKL
A = CmHKLVA K HKL

A (2)

whereK hkl
M andK HKL

A contain terms such as the struc-
ture factor and cell volume that can be calculated from
the known structures of the two phases. In principle,
therefore, by measuring the integrated intensities of
any two lines in orthodontic steel, the volume fraction
(or mass fraction) of either the martensite or austenite
phases can be determined from,

I hkl
M

I HKL
A

= VM

(1− VM)

K hkl
M

K hkl
A

mhkl

mHKL

(3)

In the present samples both phases displayed strong
textures along the axis of the wires corresponding to
austenite [111] and martensite [110]. For very narrow
wires the degree of preferred orientation during manu-
facture is often so strong that only the 111-austenite line
and the 110-martensite line can be observed in diffrac-
tometer patterns taken of wire cross-sections. In such
circumstances, accurate quantitative analysis based on
the random crystal model, represented by Equation 1,
cannot be carried out without a large correction for pre-
ferred orientation. However, when the orientation dis-
tributions of the two phases are similar the preferred
orientation corrections will also be similar and Equa-
tion 3 is still valid for semi-quantitative analysis if used
with the appropriate pair of lines. Such a pair is the 111-
austenite line and the 110-martensite lines because the
stress induced phase transformation results in the 111
austenite plane converting into a 110 martensite plane.
Although there is an orientation change during transfor-
mation, the actual orientation distributions of the 111
austenite and 110 martensite planes will be approx-
imately the same although the martensite orientation
distribution is expected to be a few degrees broader.
For accurate quantitative analysis however, allowance
should be made for any differences in the orientation
distribution of the two phases. This is the approach
adopted in the present investigation.

All the XRD data were collected by reflection diffrac-
tion using a conventional Siemens D5000 diffractome-
ter with a graphite diffracted beam monochromator.
Two forms of sample were prepared by embedding
wires in an epoxy resin composite and then chemically
polishing the exposed wires to obtain a smooth undam-
aged surface. Illustrations of the two types of sample
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Figure 2 Types of specimens prepared for XRD analysis to measure the
martensite/austenite content in orthodontic stainless steels.

are shown in Fig. 2. After a preliminary investigation
of the XRD patterns and the results from each type
of specimen, it was decided to use only cross-section
specimens shown in Fig. 2a.

In specimens of type (a) the austenite 111 line is much
more intense than the same line in type (b) specimens
whereas the martensite 110 line is approximately the
same intensity in both specimen types. This arises be-
cause the normals to the 111 austenite and 110 marten-
site planes are strongly orientated along the axes of the
wires. Given this condition then other members of the
austenite{111} family will be centred about angles of
70.5◦, 109.5◦ and 180◦ with respect to the axis of the
wire. There are fewer crystals therefore oriented with
any of the{111} family at 90◦ to the wire axis. Alter-
natively, for every 110 plane oriented along the wire
axis there will be other members of the{110} family at
90◦ and 180◦. Hence the 110 martensite line tends to be
equally intense in both longitudinal and cross-section
specimens. On the whole, cross-sectional specimens of
type (a) give the strongest combination of 111 austen-
ite and 110 martensite lines and are easier to interpret
because of the well-defined and reproducible nature of
the preferred orientation. As the intensity of lines other
than the 110 martensite and the 111 austenite can be
very small, all the quantitative analysis has been done
using the integrated intensities of these two lines only.
Fortunately these lines can be measured with good pre-
cision which is particularly important for measuring
the preferred orientation distribution where the diffrac-
tometer is set-up in an asymmetric condition thereby
causing defocussing and diminished intensities.

The procedure developed here for correcting the ob-
served integrated intensities for preferred orientation
depends on being able to determine the preferred ori-
entation distributions of the austenite and martensite
phases in the wires. A unique aspect of the present pro-
cedure is the development of a correction mechanism
that not only compensates for the preferred orientation,
but also for the finite size and slightly irregular areal
shape of the specimens.

As the specimens are always set spinning about an
axis perpendicular to the specimen surface, the pre-
ferred orientation distribution of each phase will depend
only on the angleψ between the normal to the specimen
(i.e. the wire axis) and the normals to the hkl planes. The
orientation distribution can be derived by carrying out
asymmetric diffraction so that crystals with their planes
oriented at an angleψ to the surface normal come into

Figure 3 Asymmetric diffraction to measure the intensity diffracted
from hkl planes at an angleψ to the surface of the specimen.

the diffraction condition [9–11]. In the present samples
asymmetric diffraction has been used to determine the
integrated intensities,I 110

M (ψ) and I 111
A (ψ), of the 110

martensite and 111 austenite lines as function of the
off-set angleψ between the normal to the specimen
and the diffraction vectorS as shown in Fig. 3.

Under the asymmetric diffraction conditions shown
in Fig. 3, diffraction profiles from a conventional dif-
fractometer are defocussed and broaden with increas-
ing ψ , particularly at low 2θ angles. An example of
the 110 martensite and 111 austenite diffraction pro-
files obtained from one of the orthodontic wires for a
range of off-set anglesψ from 0◦ up to 12◦ is shown
in Fig. 4. Owing to the high concentration of disloca-
tions in the wires, the diffraction lines were very broad
(FWHM≈ 0.5◦ or more) and the defocussing and in-
strumental broadening was overshadowed by the spec-
imen diffraction broadening. All the measured X-ray
profilesD(2θ ) were symmetric and could be accurately
fitted by representing each emission line in the Cu Kα

spectrum with a pseudo-Voigt function [12], i.e.

D(2θ ) = γ L(2θ )+ (1− γ )G(2θ ) (4)

Figure 4 The 110 martensite and 111 austenite lines from an orthodontic
wire recorded at different offset anglesψ between 0◦ and 12◦ at steps of
2◦. The plot forψ = 2◦ is omitted for clarity as the profile is almost the
same as forψ = 0◦.
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where L(2θ )= Lorentzian function andG(2θ )=
Gaussian function. All the integrated intensities,
I 110
M (ψ) and I 111

A (ψ), were therefore determined from
profile fitting using the X-ray software package XFIT
[13, 14].

In specimens with random crystallites the integrated
intensityIX(ψ) of the line from phase X (i.e. X= A or
M) varies with the off-set angleψ as

IX(ψ) = I hkl
X (1+ tanψ cotθ ) (5)

where I hkl
X is the integrated intensity obtained under

symmetric diffraction conditions atψ = 0◦ for thehkl
line in phase X for random crystals. This variation with
ψ arises from changes in X-ray absorption and beam
spreadW across the sample surface when the X-ray
beam is incident at an angleω which is different from
the Bragg angleθ (see Fig. 5). In the present samples
the crystallites in the wires are not randomly oriented.
Also, the specimens have a finite lateral size so that the
incident beam can extend beyond the specimen, as il-
lustrated in Fig. 5, giving a reduced integrated intensity
relative to an “infinite” specimen. Under these circum-
stances Equation 5 for phase X has to be modified to,

IX(ψ) = f (W)PX(ψ)I hkl
X (1+ tanψ cotθ ) (6)

where, f (W) represents the fraction of the beam’s foot-
print incident on the specimen when the beamspread is
W and, PX(ψ) is the ratio of the number of crystal-
lites oriented in the direction of the diffraction vectorS
relative to the random crystal model.

To apply Equation 6, it is necessary to determine
f (W) for each specimen. The effect on the integrated
intensity of the incident beam spreading across and
beyond the limits of the sample can be characterised by
measuring the integrated intensityI (α) of a profile as a
function of the angle of divergenceα. At any divergence
angleα, the beamwidthW is given by the relation,

W = αR cosecω

1− (α/2)2 cot2ω
(7)

Figure 5 SpreadW of the incident beam across a specimen surface for
a diffractometer, of radiusR, set at an equatorial divergenceα and an
incident angleω.

whereω is the angle of incidence andR is the radius
of the diffractometer. At smallα, when the beam is
contained within the specimen, the integrated intensity
I (α) increases linearly withα. For an infinite specimen
I (α) would continue to increase linearly withα and it
is this line that definesf (W) = 1. For a finite specimen
the rate of increase ofI (α) with α will decrease and
then flatten off as the beam spreads beyond the limits
of the diffracting sample. Provided the region over
which f (W) = 1 is sufficiently long to clearly identify
the linear region inI (α) then, by extrapolating the
linear portion ofI (α) to largeα to identify I (α)extrap,
the correction factorf (W) is given by,

f (W) = I (α)measured

I (α)extrap
(8)

In the present work,f (W) was measured separately
for each of the four wire specimens using a Siemens
D5000 X-ray diffractometer operating in a symmetric
mode (i.e.ω = θ ) with the sample spinning and fitted
with stepper motor controlled divergence slits which
can be automatically incremented in steps of 0.1◦ from
0.2◦ up to 3◦. Either the 111 austenite or the 110 marten-
site profile was measured at eachα to determineI (α)
depending on which line was stronger. An illustration
of the results obtained for one of the wires is given
in Fig. 6a, but withα converted toW using Equa-
tion 7 to obtain the variation in the integrated intensity
I (W) with beamspeadW, and the expected variation
I (W)extrap for an infinite specimen. Fig. 6b shows the
form of f (W), determined fromI (W) and I (W)extrap,
which for convenience was fitted with a sixth order
polynomial. During the determination off (W) the di-
vergence angleα is a variable term andω is fixed at
θ . When the diffractometer is set up to measure the in-
tegrated intensityIX(ψ) under asymmetric conditions,
the angle of divergence is fixed atα0 andW varies be-
cause of the changing angleψ . The appropriatef (W)
term corresponds to the value ofW given by Equation 7
with α = α0 (typically 1◦) andω = (θ − ψ).

The principal objective of this work is to accu-
rately determine the ratio of the integrated intensities,
I 111
A /I 110

M , of the 111 and 110 lines of the austenite
and martensite phases that would be obtained if there
were no preferred orientation. From the asymmetric
diffraction measurements ofIX(ψ) and f (W) for each
phase X, it is possible to determine the texture function
0X(ψ) = PX(ψ)I hkl

X for each phase over a range ofψ
angles using Equation 6,

0X(ψ) = PX(ψ)I 111
X = IX(ψ)

f (WX)(1+ tanψ cotθX)
(9)

In specimens with random crystallites the orientation
distribution termPX(ψ) = 1 at allψ so that0X(ψ) =
I hkl
X . In addition, all planes in the{hkl} family con-

tribute to the intensity term0X(ψ). When the crys-
tallites are very strongly oriented the integrated inten-
sity 0X(ψ) atψ = 0◦ is enhanced andPX(ψ) À 1 at
ψ = 0◦. However, the orientation functionPX(ψ) de-
creases to zero very rapidly within a few degrees.
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Figure 6 (a) Integrated intensityI (W) measured at different levels of
the beamspreadW of the incident beam on one of the orthodontic wire
samples. The beamspread was varied by increasing the divergence angle
α of the beam, (b) Measured correction factorf (W) for finite specimen
size when the spread of the incident beam isW.

To convert the results for a strongly oriented crystal
to the equivalent random integrated intensityI hkl

X , it is
necessary to determine the average of0X(ψ) over all
directions in space [9]. Unlike the random crystallite
case, only one member of the{hkl} family is contribut-
ing to the diffraction atψ = 0◦ in a strongly oriented
material and the result of averaging isI hkl

X /mhkl. As
all the diffraction measurements are carried out with
the specimen spinning in its own plane, the measured
0X(ψ) values already represent an average value at a
fixedψ over the longitudinal coordinateφ around the
polar axisψ = 0. The mean value of0X(ψ) over the
surface of a sphere is therefore defined by the equation,

1

4π

∫ π

0
2π sinψ 0X(ψ) dψ = I hkl

X

mhkl
(10)

In the orthodontic wires investigated here the texture
is not always strong enough for the function0X(ψ)
to decay rapidly to zero and other planes in the{hkl}
family contribute a small amount to the integrated in-
tensity over the range of measurement inψ . In this case
the observed function0X(ψ) is a sum of0 functions
each representing a different sub-group ofhkl planes

Figure 7 An illustration of the function0M(ψ) for a martensite phase
showing it as a sum of the texture function0M,0(ψ) for the 110 planes,
and0M,60(ψ) for the distribution of the (101), (011), (01̄1) and (10̄1)
planes centred onψ = 60◦.

in the{hkl} family. For the austenite 111 line between
ψ = 0◦ and 12◦, 0A(ψ) is represented as the sum of
two functions, i.e.

0A(ψ) = 0A,0(ψ)+ 0A,70.5(ψ) (11a)

where0A,0(ψ) represents the distribution of the (111)
planes centred aboutψ = 0◦, and0A,70.5(ψ) repre-
sents the distribution of the (11̄1), (11̄1) and (̄111)
planes centred aboutψ = 70.5◦. Although there are
also distributions aboutψ = 109.5◦ and 180◦ repre-
senting other members of the{111} family, these can
be neglected in the present case as their contributions at
ψ ≤ 12◦ are very small. An illustration of0A(ψ) and
the contributions of the component functions0A,0(ψ)
and0A,70.5(ψ) corresponding to the present samples is
given in Fig. 7. Similarly, for the martensite 110 line,
0M(ψ) is represented as the sum, i.e.

0M(ψ) = 0M,0(ψ)+ 0M,60(ψ) (11b)

where 0M,0(ψ) represents the distribution of (110)
planes and0M,60(ψ) represents the distribution of the
(101), (011), (01̄1) and (10̄1) planes.

Under these circumstances, the appropriate func-
tion for calculatingI hkl

X /mhkl through Equation 10 is
0X,0(ψ) rather than0M(ψ). The question therefore is,
how can0X,0(ψ) be extracted from the experimental
results0X(ψ)? In the present results, the dominant
contributions to0M(ψ) and0A(ψ) are0M,0(ψ) and
0A,0(ψ), respectively, and the higher terms,0M,60(ψ)
and 0A,70.5(ψ), behave as a “background contribu-
tion” which typically contribute<2% of the measured
0M(ψ) or0A(ψ) values (see Fig. 7). As a first approx-
imation therefore, it can be assumed that over the fitted
range 0◦ ≤ ψ ≤ 12◦,

0M(ψ) ≈ 0M,0(ψ)

and

0A(ψ) ≈ 0A,0(ψ) (12)
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In the examples discussed in this paper the error intro-
duced into the measured volume fraction of martensite
VM by neglecting the higher order terms in0X(ψ) is no
more than∼2%. Further discussion on the magnitude
of this systematic error is given later.

In practice the procedure adopted to determineVM
is to first fit the texture functions0A(ψ) and0M(ψ)
over the measured range inψ . Pseudo-Voigt functions
are used here as these fit well with a shape factorγ

between 67% and 100% Lorentzian [12]. The fitted
functions are then calculated at 0.1◦ steps over the range
ψ = 0 to 180◦, weighted by sinψ , before calculating
the numerical integralÄX(X = M or A) given by,

ÄX =
∫ 180

0
sinψ0X(ψ) dψ (13)

The full expression used to determine the volume frac-
tion VM of martensite when Equation 3 is expressed in
terms of measured and calculated parameters becomes,

ÄM

ÄA
= VM

1− VM

K hkl
M

K HKL
A

(14)

The fitting and numerical integration associated with
the above analysis is usually done using the numerical
analysis and graphics software package ORIGIN 5.0.

In the present samples the preferred orientation is
relatively strong and the texture widthsHA andHM, as
defined in Fig. 7, are all within the band 5◦ to 13◦. For
this degree of preferred orientation the overlap between
the component functions0M,0(ψ) and0M,60(ψ), and
between0A,0(ψ) and0A,70.5(ψ), is small but not neg-
ligible. The basis of the iterative correction procedure
developed for compensating for the overlap assumes
that the two component functions within any measured
0X(ψ) have essentially the same shape. but different
total areas, so that

0A,70.5(ψ) = wA0A,0(ψ − 70.5)

and

0M,60(ψ) = wM0M,0(ψ − 60) (15)

wherewA andwM are the relative weights of the com-
ponent peaks (see Fig. 7). This assumption is essentially
stating that if the distribution of the (110) planes in the
martensite phase around aroundψ = 0◦ is±10◦, then
the distribution of the (101), (011), (01̄1) and (10̄1)
planes aboutψ = 60◦ will also be≈±10◦. On this
basis the measured0X(ψ) terms can be expressed as,

0A(ψ) = 0A,0(ψ)+ wA0A,0(ψ − 70.5)

and

0M(ψ) = 0M,0(ψ)+ wM0M,0(ψ − 60) (16)

To develop an overlap correction it is necessary to
know the relative weightswA andwM. These can be
estimated on the basis that three planes contribute towA

0A,0(ψ − 70.5) so that when averaged over the surface
of a sphere this function will be three times that of the
average value of0A,0(ψ). For the equivalent martensite
functions, the equivalent ratio is four to one. Under
the conditions appropriate for the present sample, the
weighting termwX (X=A or M) can be reduced from
the expression,

wX
∼= MX

2 sinψ0

∫ 180
0 0X,0(ψ) sinψdψ∫ 180
0 0X,0(ψ) cosψdψ

(17)

whereMX = 3 or 4 and,ψ0 = 70.5◦ or 60◦ for austen-
ite and martensite, respectively. In the execution of this
correction procedurewX was first estimated by let-
ting 0X,0(ψ)= fitted function0X(ψ) in Equation 17.
The measured function0X(ψ) was then fitted using the
model represented by Equation 16 to obtain a new fitted
form for 0X,0(ψ). An updated value forwX can then
be obtained using Equation 17 and further iterations
carried out to converge on a more accurate form for
0X(ψ). This was unecessary for the present samples
as one iteration was sufficient to obtain an accurate
correction.

3. Results and analysis
The texture functions0M(ψ) and0A(ψ) obtained for
the four different wires over the rangeψ = 0◦ to 12◦ are
shown in Fig. 8. This figure also shows the fitted curves
0M(ψ) and0A(ψ) from which the termsÄA andÄM
were determined. The results of the fitting are given in
Table I along with the calculated volume fractionVM of
martensite in each wire and the breadths,HM andHA,
of the functions0M(ψ) and0A(ψ). A number of differ-
ent results forVM are presented, which are discussed in
more detail later, comparing the present method with
the results obtained if no preferred orientation correc-
tion is applied. The termsHM andHA reflect the degree
of texture in the particular phase and represent the val-
ues ofψ at which the fitted texture function0X,0(ψ)
decreases to 50% of its initial value atψ = 0◦. All the
uncertainties quoted in Table I reflect the precision of
the fitting procedure. The atomic scattering factors and
associated dispersion corrections used to determine the
structure factors for calculatingVM from Equation 14,
were obtained from the International Tables for Crys-
tallography Volume C [15]. In the calculation of the
structure factors it was assumed that the alloying ele-
ments in the wires were substitutionally disordered so
that,

Faustenite= 4 f exp(−BA sin2 θ/λ2)

and

Fmartensite= 2 f exp(−BM sin2 θ/λ2)

where f = 0.700fFe + 0.181fCr + 0.078fNi +
0.014fMn + 0.027fSi. It was assumed that tempera-
ture parametersBA = BM and that these values will be
≈0.35Å2, the same as Fe at room temperature [16]. The
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TABLE I Results obtained after fitting the measured texture function0M(ψ) and0A(ψ) for each of the four wires. The termsHM and HA are
a measure of the preferred orientation and represent theψ angles at which the fitted functions0M,0(ψ)/0M,0(0) and0A,0(ψ)/0M(0) = 0.5. The
three columns labelledVM are the volume fraction of martensite obtained from the present data, (a) using the present orientation correction assuming
0X(ψ) = 0X,0(ψ), (b) using the present orientation correction but compensating for overlap between0A,0(ψ) and0A,70.5(ψ) and, between0M,0(ψ)
and0M,60(ψ), (c) using the integrated intensities measured atψ = 0◦ and the intensity equation for randomly oriented crystals (Equation 3). The
numbers in brackets are the uncertainties that propagate from the uncertainties from fitting the observed texture functions0M(ψ) and0A(ψ)

(a) VM (b) VM

Orientation Orientation (c)VM

Correction Correction No Orientation
(No Overlap (+ Overlap Correction

Wire type H ◦
M H ◦

A Correction) Correction) (Random Xtal)

W (1.62 mm) 12.9 (3) 6.8 (2) 0.58 (5) 0.56 (5) 0.25 (1)
W (0.52 mm) 7.1 (2) 6.3 (2) 0.75 (3) 0.74 (3) 0.65 (2)
D (2.18 mm) 12.3 (3) 6.9 (1) 0.72 (3) 0.70 (3) 0.35 (1)
D (0.88 mm) 10.6 (2) 5.7 (2) 0.83 (6) 0.82 (6) 0.47 (2)

Figure 8 The measured and fitted textures functions,0M(ψ) and0A(ψ), for each of the four orthodontic wires.

lattice parameters used for calculating the cell volume,
aaust= 3.586Å andamart = 2.871Å, were measured
directly from the XRD pattern. As the 111 austenite
and 110 martensite lines are<1◦ 2θ apart, any error
in the choice ofB parameter or the composition will
only have a small effect on the volume fractionVM
determined through Equation 14 as this equation con-
tains the ratioFM/FA which≈0.5 irrespective of the
temperature parameter B or the alloy composition.

In all the wires the preferred orientation of the austen-
ite phase is stronger than the martensite phase. The
width HA of the austenite phase is consistently between
5.7◦ and 6.9◦, and the extrusion process only increases
the texture by a relatively small amount. The texture of

the martensite phase is less pronounced than the austen-
ite phase and, with the exception of the finer typeW
wire, HM − HA ≥ 5◦. This difference is probably the
result of the orientation change that occurs during the
austenite-martensite transformation. The actual effect
of the extrusion process on the martensite orientation
is quite different for the two wires. In the TypeW wire,
in particular, the orientation widthHM decreases by al-
most 6◦ on extrusion where as the change in the typeD
wire is∼1.7◦ and only slightly larger than the change
for the austenite phase in this wire.

The fact that the degree of texture in the marten-
site and austenite is quite different for three of wires
is the main factor that makes correction for preferred
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orientation very necessary. Column (b) of the results
for VM in Table I which is corrected for both pre-
ferred orientation and overlap is the most accurate of
the three sets. The results forVM, labelled “random
crystals” (i.e. column (c)) with no orientation correc-
tion, were obtained by substituting the integrated in-
tensities for martensite and austenite atψ = 0 into
the conventional quantitative analysis equation repre-
sented by Equation 3. When the degree of texture of
the two phases is similar, as is almost the case for the
finer TypeW wire, the volume fractionVM obtained
by assuming no preferred orientation will be similar to
the result obtained after correction for preferred orien-
tation. Under these circumstances the preferred orien-
tation correction terms for the austenite and martensite
tend to cancel each other. In three of the wires consid-
ered here, the texture of the austenite phase is much
stronger than martensite, and the preferred orientation
correction terms are different for each phase. As a con-
sequence, application of the “random crystal” intensity
equation severely under-estimates the martensite con-
tent by up to 50%. To within a 10% margin, the volume
fraction obtained after correction for preferred orienta-
tion,Vcorrected

M , is related to the volume fraction obtained
from the “random crystal” intensity equation,V random

M ,
as,

Vcorrected
M ≈ 1.05

HM

HA
V random

M (14)

Unfortunately, it was not possible to compare the
present results forVM with those using other techniques.
Both magnetic measurements and transmission elec-
tron microscopy (TEM) were carried out on the speci-
mens, but neither technique provided reliable results.
TEM images were uniformative because of the fine
grain structure of the orthodontic wires and the fact
that both phases are twin structures of almost identi-
cal appearance. Magnetic measurements on orthodon-
tic wires are difficult to interpret, and measurements
carried out on the present wires at another laboratory
were clearly inconsistent with the X-ray results. In par-
ticular, for one of the specimens shown in Fig. 1, mag-
netic measurements gave zero martensite content which
is clearly in error given the magnitude of the martensite
peak.

The uncertainties quoted in Table I for volume frac-
tions VM of martensite after correction for preferred
orientation range from±4% up to±8%. These uncer-
tainties reflect standard deviations associated with fit-
ting the texture function0X(ψ) to determine0X,0(ψ)
and its subsequent extrapolation beyond the mea-
sured range to calculate the integral termsÄX =∫ 180

0 sinψ0X,0(ψ) dψ . For the texture widths encoun-
tered in the austenite and martensite phases this un-
certainty is significantly greater than the correction for
overlap between the component functions within each
0X(ψ) function. To obtain an accurate estimate of the
integralÄX it is of central importance to be able to
predict the shape of the tail of0X,0(ψ) with reason-
able accuracy because of the weighting introduced by
the “sinψ” within the integrand ofÄX. In the present

data, the extrapolated austenite functions0A,0(ψ) are
more reliable than the corresponding martensite func-
tions0M,0(ψ). Although both sets of fitted functions ex-
tend beyond measurement limit ofψ , the texture widths
HM of all but one of the martensite results are also larger
than 12◦, the maximum measuredψ . This makes the
extrapolation of0M,0(ψ) beyond 12◦ very sensitive to
the accuracy of both the fitted texture widthHM and the
pseudo-Voigt parameterγM which describes the degree
of Lorenzian character of0M,0(ψ). At one extreme,
when the fitted function is close to Lorentzian (i.e.
γM ≈ 1)0M,0(ψ) needs to be extrapolated toψ ≈ 6HM
before decaying to the noise level. Conversely, when the
texture function is Gaussian shaped (i.e.γM ≈ 0) the
function0M,0(ψ) decays very rapidly withinψ ≈ 3HM
and the uncertainty of the extrapolated function is less.

The accuracy of the results presented here, would
have been better had Cr Kα radiation been available
(λ = 2.29Å). At this wavelength the 111 and 110 lines
shift from 2θ ≈ 45◦ up to≈67◦ thereby increasing the
upper limit ofψ from 12◦ up to∼25◦. The only draw-
back is a larger overlap correction because of the greater
contribution of the higher order components0M,60(ψ)
and0A,70.5(ψ) in the range of measurement. To obtain
an accuracy≈5% or less for the volume fractionVM us-
ing the method proposed here, it is recommended that
the texture widths,HM and HA, be less than 10◦ and
that the measuredψ range be at least twice the largest
HX value. As the texture widths become larger and the
measurement range become smaller, the uncertainty in
the extrapolated texture functions grows along with the
uncertainty inVM.
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